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The  paper  presents  new  calorimetric  data  on the  excess  heat  capacity  and  vibrational  entropy  of  mixing  of
Pt–Rh  and  Ag–Pd  alloys.  The  results  of the latter  alloy  are  compared  to those  obtained  by  calculations  using
the density  functional  theory.  The  extent  of the  excess  vibrational  entropy  of  mixing  of these  binaries  and
of some  already  investigated  binary  mixtures  is  related  to  the  differences  of  the  end-member  volumes
and the  end-member  bulk  moduli.  These  quantities  are  used  to roughly  represent  the  changes  of the  bond
length  and  stiffness  in the  substituted  and  substituent  polyhedra  due  to compositional  changes,  which
lloys
xide materials
ntropy
eat capacity
alorimetry
omputer simulations

are  assumed  to  be the  important  factors  for the  non-ideal  vibrational  behaviour  in solid  solutions.
© 2012 Elsevier B.V. All rights reserved.
nharmonic vibrations

. Introduction

The standard entropy (S298.15) of a perfect crystal can be derived
rom heat capacity (CP) measurements ranging from 0 to 298.15 K
ecause the entropy of a perfect crystal approaches zero when the
emperature approaches zero K, i.e., the configurational part of the
ntropy (structural disorder) is zero. The temperature dependence
f the entropy is given by the integral of CP/T dT and contains mainly
he vibrational part of the entropy. Beside the vibrational entropy,
he integral CP/T dT may  also contain magnetic, electronic and
ther contributions (e.g., contributions from structural phase tran-
itions). In solid solutions, the configurational entropy is unequal to
ero and the heat capacity versus composition behaviour generally
eviates from a linear relationship, especially at low tempera-
ures of ∼50 K. This deviation gives rise to excess heat capacities
f mixing and in consequence to excess vibrational entropies of
ixing. These excess quantities are significant in several binary

lloys [1],  but also in silicate solid solutions like alkali feldspars
NaAlSi3O8–KAlSi3O8), garnets (Mg3Al2Si3O12–Ca3Al2Si3O12), and
n plagioclases (NaAlSi3O8–CaAl2Si2O8) [2–4].
The physical nature of the excess vibrational entropy is still
oorly understood. The excess entropy was correlated with the
xcess enthalpy of mixing in liquid binary alloys [e.g., 1, 5].  Such
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a relationship was  also proposed by computer simulation stud-
ies performed on alkali halide, metallic and oxide systems [6,7].
Some light was  shed on the physical nature of the excess vibrational
entropy by Van de Walle and Ceder [8],  who gave an overview of
the suggested microscopic mechanisms. Substituting an atom by
another atom of different size leads to strain fields. The smaller
atoms get under tension, the larger one under compression. Beside
this size mismatch effect, the bond stiffness was proposed to be an
important factor [9,10].  To explain these relationships, Benisek and
Dachs [10] distinguished three cases for a solid solution AC BC:

• The B C bonds are longer and elastically stiffer than the A C
bonds. Due to the elastically stiffer nature of the B C bonds, their
inter-atomic distances will not change as much as that of the A C
bonds with varying composition. Considering the changes from
the end-member structures, the increase in A C bond length is
thus more pronounced than the decrease in B C bond length.
This behaviour is illustrated in Fig. 1. Atom A will find itself in
a highly enlarged structure. Hence, the A C bonds are softened
in the solid solution and consequently, the mean frequencies of
the vibrations are lowered. Vibrations with lower frequencies are
excited at lower temperatures, and this behaviour generates pos-
itive excess heat capacities and vibrational entropies of mixing.
• In cases where the stiffness of the A C and B C bonds is similar
but B C bonds are again longer than A C ones, the magni-
tude of A C bond length increase is more pronounced than the
decrease in B C bond lengths (considering bond length changes

dx.doi.org/10.1016/j.jallcom.2012.03.007
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
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Fig. 1. Mean bond length (R) in a solid solution consisting of components AC and BC.
Heavy lines show the changes of R with compositional changes. It represents cases,
where the decrease of the larger polyhedron (�RB C) is less pronounced than the
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mixing, i.e., the short range ordered phase has a somewhat lower
ncrease of the smaller one (�RA C). Broken lines represent the two  limiting cases,
auling limit and virtual crystal approximation.

from the end-member structures). This follows from the typical
asymmetric dependence of the potential energy on the inter-
atomic distance energetically favouring elongated bond lengths,
when compared to compressed ones. Consequently, the soften-
ing of A C bonds is again more pronounced than the stiffening
of B C bonds and positive excess heat capacities and vibrational
entropies of mixing are produced.
B C bonds are longer but elastically softer than A C bonds. The
elastically stiffer A C bonds force the B C bonds to shorten to
a higher extend compared to the other cases. The magnitude of
bond softening may  be similar to that of bond stiffening or even
smaller. The effect on the entropy tends to be compensated or it
results in even negative excess vibrational entropies.

Based on the cases discussed above, Benisek and Dachs [10]
escribed the maximum values of the excess vibrational entropy
�maxSexc) by relating them to the difference in the end-member
olumes (�Vi) and to the difference in the end-member bulk mod-
li (�Ki). �Ki was chosen to be negative, if the end-member with
he larger volume had a lower bulk modulus and vice versa. Positive,
ero or negative �Ki values thus represented the different cases
entioned above. Although �Vi and �Ki may  not reflect the actual

ifferences in length and stiffness of A C and B C bonds, they were
ufficient to describe �maxSexc of some silicate solid solutions.

The objective of this paper is to investigate, if this simple rela-
ionship can also be applied to binary alloys. For this purpose, two  of
uch alloys (Ag–Pd and Pt–Rh) were investigated by relaxation and
ifferential scanning calorimetry. To enlarge the data set, the excess
ntropy of mixing of binary alloys from Kubaschweski and Alcock
1] were used, where excess enthalpy, entropy and Gibbs free
nergy values are compiled for many binary alloys. Their entropy
ata were generally determined by the evaluation of calorimet-
ic solution experiments (�H) and phase equilibrium experiments
�G).

. Experimental methods

.1. Relaxation calorimetry

Low temperature heat capacities were measured using a commercially available
elaxation calorimeter (heat capacity option of the PPMS by Quantum Design®) from

 to 300 K (for details of the technique, see e.g., [11] and references therein).

.2.  Differential scanning calorimetry (DSC)
High temperature heat capacities were measured using a Perkin Elmer Diamond
SC® from 280 to 800 K. The evaluation of the DSC raw data was performed as
escribed in [12].
 Compounds 527 (2012) 127– 131

2.3. Binary alloys

An Ag69.7Pd30.3 sheet (∼30 mg) and a Pt55.2Rh44.8 wire (∼60 mg) were used for
the calorimetric measurements. The Ag–Pd alloy was manufactured by Ögussa® ,
and the Pt–Rh alloy was  obtained from Conatex® .

2.4. Calculations using the density functional theory (DFT)

The quantum-mechanical calculations presented here were based on the DFT
plane wave pseudopotential approach using the CASTEP software [13] included in
the  Materials Studio software from Accelrys® . The calculations were performed
using the local density approximation (LDA) [14]. Alternatively, the gradient-
corrected functional (GGA-PBE) from Perdew et al. [15] was used. An ultrasoft and
alternatively a norm-conserving pseudopotential were used to calculate the wave-
functions of the ion core. Lattice dynamics calculations were based on the finite
displacement approach, implemented in CASTEP, which calculates the forces on
perturbed configurations in a supercell with positive and negative displacements.
This enables the analysis of the asymmetry of the potential well and thus the study
of  anharmonic effects [16]. This can be done by increasing the atomic displacement
from the default value of 0.0053 Å, which corresponds to the harmonic approxi-
mation, to higher values (personnel communication with S.J. Clark, University of
Durham). The heat capacities of the end-members were calculated applying the
same calculation parameters and structures (i.e., super cell with P1 symmetry) as
used for the solid solutions. For each substance (Ag, Pd, Ag75Pd25), the calculations
were performed several times increasing the precision of the calculation until the
excess heat capacity values converged.

3. Results and discussion

3.1. Calorimetric results on Pt–Rh and Ag–Pd alloys

The raw CP data of Pt55.2Rh44.8 and Ag69.7Pd30.3 have been
deposited as electronic supplementary material linked to this arti-
cle. The excess heat capacity of mixing is defined as

�Cexc
P = CAB

P − (CA
P · XA + CB

P · XB) (1)

using mole fractions (X) of components A and B. The heat capac-
ities for the low temperature region of the end-members were
taken from the National Bureau of Standards [17,18] and those for
the high temperature region were taken from Barin and Knacke
[19]. These data allowed the calculation of �CP

exc from the mea-
sured heat capacity of Pt55.2Rh44.8 and Ag69.7Pd30.3. The Pt55.2Rh44.8
alloy is characterised by small negative excess heat capacities
(<0.2 J mol−1 K−1) at low temperatures (<60 K) and by positive
excess heat capacities (not exceeding 0.5 J mol−1 K−1) at temper-
atures between 60 and 800 K. The resulting excess vibrational
entropy is positive and amounts to �Sexc = 0.5 J mol−1 K−1 at 800 K.
The entropy composition behaviour along this binary was assumed
to be symmetric so that a maximum excess vibrational entropy,
�maxSexc = 0.5 J mol−1 K−1 is proposed for this binary.

The Ag69.7Pd30.3 alloy has negative excess heat capacities below
450 K, characterised by two  negative peaks at ∼50 and ∼270 K,
shown in Fig. 2. The calculated excess vibrational entropy at 450 K is
�Sexc = −1.4 J mol−1 K−1. Because the Ag–Pd alloy shows symmet-
ric excess entropy behaviour [1],  our calorimetrically determined
value was used to calculate the maximum excess entropy for
Ag–Pd alloys. Our calculations using the Margules mixing model
yield �maxSexc = −1.7 J mol−1 K−1. This value is slightly less neg-
ative compared to the value given by Kubaschewski and Alcock
[1] (�maxSexc = −1.84 J mol−1 K−1). Their data evaluation used the
configurational entropy (Scfg) of a fully disordered distribution. Pos-
sible short range ordering in the phase equilibrium experiments
used in their evaluation might be responsible for the difference to
our calorimetrically determined value. This is because short range
ordering generates negative excess configurational entropies of
Scfg compared to the disordered structure. Ordering phenomena in
Ag–Pd alloys were also reported by first principles studies [e.g., 20,
21].
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Fig. 2. Measured isobaric excess heat capacity of mixing, �CP
exc, for Ag69.7Pd30.3

(open circles with error bars which represent one standard deviation). Lines: Isochoric
excess heat capacities of mixing, �CV

exc, from DFT calculations (LDA, ultrasoft). Dot-
ted  line: DFT results for ordered Ag75Pd25 (cell 2 in Fig. 3); dashed line: DFT results for
disordered Ag75Pd25 (cell 3 in Fig. 3); solid line: DFT results for ordered Ag75Pd25 (cell
1  in Fig. 3) including anharmonic contributions (atomic displacement of 0.04 Å).

Table 1
DFT parameter settings used in the final phonon calculations (in cases, where the
LDA  functional and an ultrasoft pseudopotential were used).

Cut off for plane wave basis set 330 eV

Grid for fast Fourier transform 24 × 24 × 24
Convergence threshold for

self-consistent field
5 × 10−7 eV/atom

Spacing for k-point sampling
(electrons)

0.04 Å−1

Spacing for q-point sampling
(phonons)

0.04 Å−1

Extension of the super cell 12 times of the
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volume in finite
displacement calculations

original super
cell

.2. DFT results on the Ag–Pd alloy

Fig. 3 shows the Ag–Pd cells (with Ag75Pd25 composition) which
ere investigated by the DFT calculations. Cell 1 and cell 2 dif-

er in their sizes, but have the same configuration, i.e., an ordered
g–Pd distribution having no Pd Pd bonds, whereas cell 3 is one of

he investigated quasi random structures (disordered Ag Pd dis-
ribution) generated by a Mathematica® routine. Using cell 1, the
onvergence criteria have been worked out yielding DFT parame-
er settings, of which the most important ones are listed in Table 1.
he excess heat capacities converged fast and enabled, for exam-

le, a relatively coarse meshed k-point sampling grid to be used.
his can be judged from Table 2. The absolute heat capacities and
he lattice parameters did not converge so fast. Possible systematic

ig. 3. Configurations of the Ag75Pd25 alloy used in DFT calculations. Open circles:
g;  closed circles:  Pd. Cell 1 and cell 2 have an ordered Ag–Pd distribution, cell 3 has

 disordered one.
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errors inherent in these values, however, were cancelled out when
considering the excess heat capacities of mixing.

The results from DFT calculations are shown in Fig. 2. The excess
heat capacities of cell 2 and cell 3 have larger negative peaks at
∼50 K when compared to the experimental results. Cell 2 and cell
3, however, yielded similar excess heat capacities demonstrating
only little dependence on the Ag–Pd distribution. We  investi-
gated further cells with disordered configurations, which yielded
almost identical results compared to that of cell 3. A small depen-
dence of the heat capacity on cation ordering was also reported
for NaAlSi3O8 and KAlSi3O8 [22]. A detailed first principles study
[23] investigated the effect of chemical order on the vibrational
entropy in Ni3Al and Pd3V. No such effect was  found in Ni3Al,
when the system was  relaxed. However, disordering of the ordered
Pd3V phase decreased the vibrational entropy by 1–2% because
in ordered Pd3V, the symmetry constraints prevented the relax-
ation.

Using cell 1, further phonon calculations were performed. Best
agreement with the calorimetric results could be achieved, if the
amplitudes for the atomic displacement were increased from the
default value of 0.0053 Å to higher values. This allows considera-
tion of anharmonic vibrations that are generated by the asymmetric
potential well. An atomic displacement of 0.04 Å improved the
agreement with the experimental data significantly (Fig. 2, solid
curve). The thermal displacement of ∼0.04 Å is comparable to
experimentally determined values [24]. At a temperature of 75 K,
averaged thermal displacements of 0.049 and 0.038 Å for Ag and
Pd, respectively, are reported [24] demonstrating consistency with
the DFT calculations.

The negative peak in the observed excess heat capacity at 270 K,
however, could not be verified by our DFT calculations and the rea-
son for this discrepancy remains unclear. It must be noted that the
measured excess heat capacity of mixing is isobaric, whereas in
the DFT calculations it is isochoric, which, however, is unlikely to
explain the difference at 270 K because unexpected dependences
of the thermal expansion coefficient and/or bulk modulus on the
temperature and composition would have to be invoked. It is more
likely that the discrepancy at 270 K is due to anharmonic vibrations
that are related to phonon–phonon interactions. This anharmonic
contribution was not considered in the calculations.

So far, the DFT calculations discussed here used an ultrasoft
pseudopotential for calculating the wavefunctions of the ion core
and LDA as functional. Using the GGA-PBE functional [15], the abso-
lute heat capacities and the lattice parameters differed significantly
from the LDA results (Table 3). If, however, the excess heat capac-
ities of mixing were considered, the differences were small, when
using an atomic displacement of ∼0.04 Å. This was also true, if a
norm-conserving pseudopotential in combination with LDA was
applied. Considering the absolute heat capacity values and the lat-
tice parameters, this combination achieved the best agreement
with the observations (Table 3).

3.3. Relationship for estimating the excess vibrational entropy

The relationship, which correlates �maxSexc linearly with �Vi
and �Ki [10] was  applied to the calorimetrically measured excess
entropy data on the Pt–Rh and Ag–Pd alloys and to the excess
entropy of two  alloys (Au–Pt, Ag–Au) reported in Kubashewski
and Alcock [1].  We  used only these two alloys from Kubashewski
and Alcock [1] for our data compilation because no configura-
tional and magnetic contributions to the entropy are to be expected
here. Together with the already investigated silicate solid solutions

[10], a data set comprising 10 binaries was  prepared (Table 4).
The �Vi and �Ki data were calculated from the literature val-
ues (see Table 4 for references) and in cases where more than
one atom or one molecule was  involved in the substitution (i.e.,
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Table  2
LDA-DFT convergence criteria for the cell containing 4 atoms (correspondent to cell 1 of Fig. 3). The lattice-parameter (a0) is given in Å. The heat capacities (CP , CV) and the
maximum values of the excess heat capacity of mixing (�maxCP,V

exc) are given in J mol−1 K−1. Those DFT heat capacity results are listed, which used an atomic displacement
of  0.04 Å.

Measured Spacing for k-point sampling (Å−1) Cut off for plane wave basis set (eV)

0.06 0.04 0.03 300 330 360

a0Ag 4.086 [41] 4.02 4.01 4.00 4.03 4.01 4.01
a0Pd 3.890 [41] 3.84 3.84 3.84 3.85 3.84 3.84
CP,VAg (100 K) 20.18 [17] 19.9 19.2 19.0 19.6 19.2 19.1
CP,VPd (100 K) 17.82 [18] 16.3 15.7 16.1 16.0 15.7 15.7
�maxCP,V

exc (50 K) −0.65 [this study] −2.0 −0.6 −0.6 −0.8 −0.6 −0.6

Table 3
DFT results for the cell containing 4 atoms (correspondent to cell 1 of Fig. 3) compared to measured ones. The results for different pseudopotentials (ultrasoft, norm-conserving)
and  functionals (LDA, GGA-PBE) are listed. The lattice-parameters (a0) are given in Å. The calculated lattice parameters should principally be smaller than measured ones,
because they represent those of lower temperatures (calculated: 0 K; measured: 298 K). However, the difference should be very small (∼0.01 Å) [26]. The heat capacities (CP ,
CV) and the maximum values of the excess heat capacity of mixing (�maxCP,V

exc) are given in J mol−1 K−1. CV should principally be smaller than CP . However, the difference
should  again be very small at 50 and 100 K [25]. Those DFT heat capacity results are listed, which used an atomic displacement of ∼0.04 Å.

Measured LDA ultrasoft LDA norm-conserving GGA-PBE ultrasoft Ab initio values
from the literature

a0Ag 4.086 [41] 4.01 4.08 4.15 4.05 [25]
a0Pd 3.890 [41] 3.84 3.84 3.93 3.91 [26]
CP,VAg (50 K) 11.66 [17] 10.4 12.2 12.9 10.0 [25]
CP,V Ag (100 K) 20.18 [17] 19.2 20.3 20.7 20.0 [25]
CP,V Pd (50 K) 8.139 [18] 6.0 7.5 7.6 6.9 [26]
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CP,V Pd (100 K) 17.82 [18] 15.7 

�maxCP,V
exc (50 K) −0.65 [this study] −0.6 

g3Al2Si3O12–Ca3Al2Si3O12 and Mg2SiO4–Fe2SiO4), their �Vi and
maxSexc values were normalised. The observed �Vi, �Ki, and
maxSexc data were then used to fit the parameters m and f of the

ollowing linear relationship:

maxSexc = (�Vi + m�Ki)f (2)

ielding m = 0.0109 and f = 2.505. In Fig. 4, �Vi is plotted against
Ki together with lines of constant maximum excess vibrational

ntropies. These are positive, if the end-member with the larger
olume is elastically stiffer (positive �Ki values). Negative vibra-
ional excess entropies are obtained, when the end-member with
he larger volume has a much lower bulk modulus compared to the
ther end-member (large negative �Ki values). Ideal vibrational

ehaviour is proposed, if either the end-members have the same
olumes and bulk moduli or an existing volume mismatch is com-
ensated by negative �Ki values (see the line with zero �maxSexc in
ig. 4). The fit parameters from this study are somewhat lower com-

able 4
ifferences in the end-member volumes and bulk moduli (�Vi and �Ki), and values for th
Ki data are obtained, if the end-member with the larger volume has a lower bulk modu

r  one molecule in the case of a coupled substitution. For Mg3Al2Si3O12–Ca3Al2Si3O12 an

�Vi (J bar−1) �Ki (GPa) 

Analbite–sanidine
NaAlSi3O8–KAlSi3O8

0.86 [27] 8[28,29] 

Pyrope–grossular
Mg3Al2Si3O12–Ca3Al2Si3O12

0.403 [30,31] −1[30,31] 

Forsterite–fayalite
Mg2SiO4–Fe2SiO4

0.133 [33] −6 [34] 

Analbite–anorthite
NaAlSi3O8–CaAl2Si2O8

0.06 [27,36] 32 [28,37] 

Anorthite–sanidine
CaAl2Si2O8–KAlSi3O8

0.82 [27,36] −25[28,37] 

CaTs–diopside
CaAl2SiO6–CaMgSi2O6

0.25 [39] −13 [40] 

Au–Pt  0.1124 [41] −105 [42] 

Ag–Au  0.0057 [41] −73 [42] 

Ag–Pd  0.1412 [41] −80 [42] 

Pt–Rh  0.0811 [41] 8 [42] 
.0 17.2 17.5 [26]

.7 −0.8

pared to m = 0.0246 and f = 2.926 obtained when fitting only the data
from the silicate solid solutions [10]. It may  be assumed that the
excess vibrational entropy behaviour of the silicate solid solutions
is thus described poorer by the new relationship incorporating the
alloys. This, however, is not the case generally, which can be seen
in Fig. 5, where the calculated excess vibrational entropy values
are plotted against the observed ones. Only the excess vibrational
entropy of the plagioclase (NaAlSi3O8–CaAl2Si2O8) solid solution is
not well described now (marked by brackets in Fig. 5), whereas in
all other cases the predicted and observed excess entropies agree
well. The reason for the disagreement with the plagioclases is not
known. However, the relationship (Eq. (2)) may  be too simple to
properly describe the behaviour in complex coupled substitutions.

Another problem inherent with Eq. (2) is that solid solutions with
a non-significant difference in their end-member volumes are dif-
ficult to treat. It is unclear in these cases whether the difference in
the bulk moduli has a positive or negative sign.

e maximum excess vibrational entropy (�maxSexc). The negative differences in the
lus. The values for �Vi and �maxSexc are normalised to a substitution of one atom

d Mg2SiO4–Fe2SiO4, these values were, therefore, divided by 3 and 2, respectively.

�maxSexc (J mol−1 K−1)

Observed by experiments Calculated using Eq. (2)

2.6 [2] 2.4

1.0 [32] 1.0

0 [35] 0.2

2.6 [4] 1.0

1.0 [38] 1.3

0[39] 0.3

−2.4 [1] −2.6
−1.4 [1] −2.0
−1.7 [this study] −1.8

0.5 [this study] 0.4
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Fig. 4. Difference in normalised end-member volumes (�Vi) versus difference in
end-member bulk moduli (�Ki). Solid symbols: silicate solid solutions; open sym-
bols:  alloys. Broken lines represent contours of constant maximum excess vibrational
entropy (�maxSexc ranging from −3 to 3 J mol−1 K−1). Negative �Ki values were
obtained if the end-member with the larger volume had a lower bulk modulus.

Fig. 5. Calculated excess vibrational entropy (�Scalc) using Eq. (2) versus mea-
s obs
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. Conclusions

A  positive excess vibrational entropy was observed for the Pt–Rh
lloy, whereas the Ag–Pd alloy is characterised by a negative one,
hich could also be found by DFT calculations. These calculations

howed that the atomic configuration has only a small influence on
he heat capacity of the Ag–Pd alloy and that anharmonic effects

odify the excess vibrational behaviour.
The relationship presented in Eq. (2) is based on the consider-

tion outlined in the introduction with components AC and BC. It,
owever, represents a situation, which differs from that in alloys: In
C BC solid solutions, the polyhedra are mixed, and no new near-
st neighbour bonds are generated, which are not already present in
he pure substances. The difference of the end-member bulk moduli
epresents, therefore, the difference in stiffness of the ACx and BCx

olyhedra at end-member composition. This situation is expected
o be similar, if atom C in AC–BC solid solutions is replaced by larger

olecules. From this point of view, it seems not surprising, that Eq.
2) is able to describe roughly the magnitude of the excess vibra-
ional entropy of silicate solid solutions (except those with coupled
ubstitutions). However, when mixing elements A and B to form an
lloy, new nearest neighbour bonds are generated (A B bonds),

hich may  have completely different elastic properties than the
ean elastic properties of the bonds in the pure phases. Let us con-

ider an alloy, where element A and B are on either side of the
ransition metals series in the periodic table. In the middle of the

[
[
[
[
[
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transition metals series, the bulk moduli tend to have a maximum
and hence, it is to be expected, that the A B bonds will be stiffer
than the A A or B B bonds. This situation was in fact found for the
Pd3V alloy [23].

Eq. (2) is not able to describe such behaviour. Further inves-
tigations are therefore planned to work out the limits of this
relationship.
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